Sustainability and Whole Life Costs

Presented by: Trevor Bradbury
12 June 2012
Whole Life Value

From Network Analysis to Product Evaluation

- Network Whole Life Cost Modelling
 - Informs clients of the impacts of changes in maintenance budgets or network condition

- Scheme Level Whole Life Costing
 - Pavements
 - Structures
 - Geotechnics
 - Drainage
 - Lighting etc.

- Product Life Cycle Evaluation
 - Demonstrates the economic and environmental benefits that can be achieved from using new and innovative materials, technologies and methods of working
Whole Life Cost Analysis of Maintenance Schemes

- Whole Life Cost of each option:
 - Systematic consideration of all costs
 - Initial Cost
 - Analysis Period - Operations and maintenance
 - End of life – Renew / decommission
 - To include all costs (now and in the future):
 - Direct costs
 - Indirect costs (Users, Society, Environment...)
 - Residual value
Whole Life Cost Analysis of Maintenance Schemes

- **Whole Life Cost:**
 - Total costs over the lifetime (or Analysis Period) of the asset
 - Discount the costs from each year of the Analysis Period back to the base year
 - Net Present Value of all costs arising in the Analysis Period
Whole Life Cost Analysis of Maintenance Schemes

3 stage process: WLC of Renewals Maintenance

Stage 1
- Define the scheme details
- Setup default variables applied throughout the analysis

Stage 2
- Establish maintenance Options to compare WLC:
 - Apply Treatments
 - Include required Traffic Management, Access and any other costs arising

Stage 3
- Assess the Whole Life Costs of the Options
- Select a chosen Option for the Scheme
Product Evaluation

- TRL has undertaken product evaluation for a number of clients. This has included:
 - Evaluation of Life Cycle Carbon Emissions from new products (i.e. New asphalt mixes, using the TRL developed, industry led, asPECT tool).
 - Evaluation of the optimum whole life cost savings achievable from using a product, treatment or system of work.
 - Sensitivity analysis to investigate the whole life impact of variations in the unit cost (price) of new materials.

- The above has allowed our customers to demonstrate the whole life benefits that can (in theory) be delivered from using their products in preference to conventional solutions.
Product Evaluation – Modelling Approach

Preset Default Data:
- Treasury discount rates
- NTM traffic growth data
- QUADRO queue curve parameters
- DFT values of time

Data Processing:
Analyses and organises the input and default data

User Input Data:
- Pavement design options
- Scheme details (road type, scheme length, lane width)
- Treatment options, costs and output rates
- Material properties
- (Initial) traffic flows and proportions of HGVs

Optimisation

Treatment Selection Rules

Treatment Selection
Condition Deterioration

Treatment Application
Cost Calculator

Pavement Design Option

Whole-life cost analysis:
Calculates the optimal maintenance profile for each pavement design option, selecting the profile with the lowest Net Present Value

Output Results:
- Option NPV
- Treatment profile
TRL’s pavement test facility
Product Evaluation - Reverse Whole Life Costing

- Where performance data (e.g. Expected life; durability) is not available an analysis based on assumed levels of performance can be carried out.

- Perturbing the performance parameters in the analysis and evaluating the resulting changes in whole life cost can be used to target the development of new products: to meet the performance criteria that deliver the greatest savings in whole life cost for a given application scenario.
Product Evaluation - Reverse Whole Life Costing

- Example output from reverse whole life costing approach.

![3D Graph](attachment:image.png)
Example of Environmental Assessment

The asphalt Pavement Embodied Carbon Tool (asPECT)

4 components of asPECT

- Protocol – a defined set of “rules” for footprinting asphalt products and applications
- Guidance – explains the decision making process behind the Protocol and provides worked examples
- Software – facilitates the calculation for those that choose to use it (calculations can alternatively be embedded into other company systems)
- Software User Guide

www.sustainabilityofhighways.gov.uk
Why resource management?

- Materials consumed
 \(~420\) million tonnes pa

- Waste generated
 \(~120\) million tonnes pa

- Waste sent to landfill
 \(~13\) million tonnes pa

- Cost of wasted materials
 \(~£1.5\) billion pa
Working with the Supply Chain

- Clients: Set requirements in project procurement
- Contractors: Set requirements in sub contractor procurement
- Trade & Specialist Subcontractors: Avoid waste on site by proper handling, storage and use of materials
- Designers & Consultants: Identify or create design solutions that use resources efficiently
- Manufacturers & Suppliers: Use more recycled materials and reduce packaging
- Waste Management Contractors: Increase waste recovery rates