Accelerated loading test results of two NCAT sections with highly modified asphalt

Erik J. Scholten – Kraton Innovation Center Amsterdam
David H. Timm – Auburn University
J. Richard Willis – Auburn University
R. Buzz Powell – National Center for Asphalt Technology
Robert Q. Klutz – Kraton Innovation Center Houston
Willem C. Vonk – Kraton Innovation Center Amsterdam

14th International Flexible Pavements Conference
Sydney, Australia
25-28 September 2011
Introduction

- Concept of highly modified asphalt
- Two high SBS sections in monitored field trials at NCAT, USA
- Rutting data comparison section N7
 - APA and AMPT data
 - Finite Element Modelling and actual rut depths at NCAT
- Successful rehabilitation of failed pavement on weak subgrade
- Summary / conclusions
Concept of Highly Modified Asphalt (HiMA)

Before mixing After mixing

2.5% SBS - Continuous asphaltene rich phase

5 % SBS - Co-continuous asphaltene and polymer rich phases

7.5% SBS – Continuous polymer rich phase

TU Delft, standard base course mix with 4.6% binder. Full sine loading in 4 point bending (20° C, 8 Hz)
Making it possible with current equipment

Challenges:
- Hard base bitumens (40-60 pen, C320, C600)
- High SBS content
- Storage stability

Issues solved by adapting design of the polymer

Kraton D0243
- Provides a low viscosity, even in hard bitumens at elevated SBS content
- Provides compatibility
- Provides storage stable PMBs with most base bitumens
Opportunities with highly modified asphalt (HiMA)

1. Base/binder course layer thickness reduction
 Life cycle impact reduction
 Up front Cost Savings and eco impact

2. Perpetual pavement at standard thickness
 High modulus, fatigue resistant, full depth asphalt pavements

3. Reinforced binder/wearing course for pavement rehabilitation
 Better performance without making pavement thicker

Kraton™ Polymers’ new SBS grade D0243 enables high SBS content with current equipment
Objective
Evaluate in situ structural characteristics of highly modified asphalt pavement relative to reference section

Two sections
1. Full depth highly modified asphalt (N7)
 - 7.5% SBS in all layers
 - 20% reduced pavement thickness
2. Highly modified overlay (N8)
 - 14.5 cm inlay over cracked pavement

3 year cycle of construction and testing

Unique opportunity to evaluate structural responses against wide range of materials and pavement structures
Update section N7

Control (178mm HMA)

<table>
<thead>
<tr>
<th>Lift Thickness</th>
<th>Pavement Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>32mm (PG 76-22; 9.5mm NMAS; 80 Gyrations)</td>
<td>Dense Graded Crushed Aggregate Base M_r = 85 MPa (\nu = 0.40)</td>
</tr>
<tr>
<td>70mm (PG 76-22; 19mm NMAS; 80 Gyrations)</td>
<td>Test Track Soil M_r = 200 Mpa (\nu = 0.45)</td>
</tr>
<tr>
<td>76mm (PG 67-22; 19mm NMAS; 80 Gyrations)</td>
<td>Lift thicknesses limited by 3:1 thickness:NMAS requirement</td>
</tr>
</tbody>
</table>

Experimental (145mm HMA)

<table>
<thead>
<tr>
<th>Lift Thickness</th>
<th>Pavement Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>32mm (7.5% polymer, 9.5 mm NMAS)</td>
<td></td>
</tr>
<tr>
<td>57mm (7.5% polymer;19mm NMAS; 80 Gyrations)</td>
<td></td>
</tr>
<tr>
<td>57mm (7.5% polymer;19mm NMAS; 80 Gyrations)</td>
<td></td>
</tr>
</tbody>
</table>

Rutting:

- S9 (control) = 5.9 mm
- N7 (HiMA) = 1.3 mm

No cracking in either section

Previous experience with thin sections led to fatigue failure within one year
Rutting comparison mixtures section N7

- **Asphalt Pavement Analyzer (APA) – AASHTO TP63-09**
 - Test temperature 64°C
 - 8000 cycles

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Average Rut Depth, mm</th>
<th>StDev, mm</th>
<th>Rate of Secondary Rutting, mm/1000 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control – Surface</td>
<td>3.07</td>
<td>0.58</td>
<td>0.140</td>
</tr>
<tr>
<td>Control – Base</td>
<td>4.15</td>
<td>1.33</td>
<td>0.116</td>
</tr>
<tr>
<td>HiMA – Surface</td>
<td>0.62</td>
<td>0.32</td>
<td>0.0267</td>
</tr>
<tr>
<td>HiMA – Base</td>
<td>0.86</td>
<td>0.20</td>
<td>0.0280</td>
</tr>
</tbody>
</table>

- **Asphalt Mixture Performance Tester (AMPT)**
 - Test temperature 59.5°C
 - Flow number as rutting indicator (no. of cycles at 10% axial strain)
Rutting predictions with APA and AMPT provide same relative result

HiMA mixes provide significant improvement in rutting resistance

\[y = 46.729x^{-0.532} \]

\[R^2 = 0.9289 \]
Relative rutting in actual NCAT sections very similar to rutting in modelled pavements at TU Delft

- 4.5 - 5x less rutting in high SBS pavements
Conventional modelling indicates highly modified pavements have more rutting due to reduced stiffness. Test results show the opposite.
Design calculations

- Shell Pavement Design Manual
- Melbourne climate
- 10 million ESALs

Standard asphalt mix:
Stiffness at 20° C – 8 Hz: **8900 MPa**
Fatigue equation:

\[N = 6.10^{11} x^{-3.36} \]

Polymer modified mix:
Stiffness at 20° C – 8 Hz: **8100 MPa**
Fatigue equation:

\[N = 9.10^{18} x^{-6.17} \]

What difference does fatigue make for the design?
The importance of taking into account fatigue

Fatigue line HiMA included; HiMA asphalt allows 29% thickness reduction despite slightly lower stiffness

Fatigue line unmodified asphalt applied for both mixes: HiMA pavement would be thicker due to lower stiffness
Rehabilitation of failed pavement with high SBS mix

2006 Perpetual design study Oklahoma DoT at NCAT
Soft subgrade with stiff top 8 inches (lime stabilization)

Original construction severely distressed after 10 million ESALs
Rehab with paving fabric failed after 4.0 million ESALs
Rehab with paving fabric after 4.0 million ESALs

10" pavement
paved summer 2006
5" rehabilitation
paved August 2009
10 months old
High SBS modified mill & inlay after 4.2 million ESALs
Concluding remarks

- Full depth high SBS modified section N7 at NCAT shows continued good rutting results
- Asphalt Pavement Analyzer and Asphalt Mixture Performance Tester predict same relative rutting differences between reference and high SBS mixes
- Actual rutting data matches predicted rutting performance based on Finite Element Modelling from TU Delft
- Excellent rutting performance could not be predicted with traditional pavement design models → Need for better models!
- High SBS modified mill and inlay shows no damage after 4.2 million ESALs whilst previous rehab failed
Concluding remarks

- NCAT section N7 has no cracking until date despite 20% thickness reduction
- Lab testing confirms superior performance of high SBS mixes to prevent rutting and cracking
- Thinner, more cost effective asphalt pavements are possible now without jeopardizing performance
We believe the information set forth above to be true and accurate, but any findings, recommendations or suggestions that may be made in the foregoing text are without any warranty or guarantee whatsoever, and shall establish no legal duty or responsibility on the part of the authors or any Kraton Polymers entity. Furthermore, nothing set forth above shall be construed as a recommendation to use any product in conflict with any existing patent rights. All Kraton Polymers entities expressly disclaim any and all liability for any damages or injuries arising out of any activities relating in any way to this publication or the information set forth herein.

©2011 Kraton Performance Polymers, Inc. All rights reserved.