Binder Specifications and developments

High performance asphalt and binders Part 2

2012 Study Tour Key Topics

1. Long life pavements
 - Experience, design systems, use, durability & performance
2. High performance asphalt & binders
 - High modulus asphalt (EME, HiMA), modifiers
3. Sustainability
 - RAP/WMA, bitumen substitutes, carbon calculators & energy analysis
 - Climate change impacts, societal concerns
4. Health & Safety
 - Construction of road works, health considerations for bitumen and asphalt products
5. Procurement Systems
 - Proprietary products (Avis Technique, HAPAS, etc.), “green” procurement
 - REACH, responsible sourcing, PPP and contract models

What did we want to learn?

What is the current status of binder specifications in Europe?

What strategic direction is being adopted for binder specifications?

What test protocols are under consideration for binder testing?

What are the learnings and actions for Australia?

Brief History

Circa 1995 member states of the European Union agreed that harmonisation of specifications was required to facilitate cross border trade.

The first task was to set up a CEN committee charged with producing a pan-European bitumen specification. This group, TC336 worked on collating the existing country specifications and amalgamating them into Europe-wide specifications.

Data Collection

- New tests on binders
- CEN TC336 Bituminous binders

Task Groups

- TG1: High service temps
- TG2: Low service temps
- TG3: Ageing-conditioning

First generation – paving grade bitumen

EN 12591 (1999)

Based on conventional test methods

Penetration

Softening Point
First generation - PMB specification

EN 14023 (2005)

- Penetration
- Softening point
- Cohesion (optional methods permitted)
- RTFOT
- Flash point

Optional tests: Fraass, Elastic recovery, storage stability,

Progress towards Performance Related Specifications (PRS)

The European Construction Products Directive (CPD) requires that harmonised standards should be expressed as far possible in terms which are “performance based”

1. **Step 1** Identify binder properties linked to asphalt pavement performance ✓
2. **Step 2** Select and standardise appropriate test methods to measure these properties ?
3. **Step 3** Collect data and ensure field validation
4. **Step 4** Review the grading system according to the new specifications

Progress towards Performance Related Specifications (PRS)

Interestingly, binder adhesion is not yet a candidate property for inclusion in a PRS.

CEN’s current position following an extensive amount of work is that an easy to use test to characterise bitumen adhesion doesn’t exist nor is it likely that one will emerge in the near future.

Bitumen industry position report (2012)

Acknowledgements

Eurobitume is grateful to the members of the Task Force PRS for providing this document.

Fred Barr – Seal
Jawad Butterwa – Road
Pier Luca Cano – CPB
Wim De Vriendt – Eurobitume
Mick Harvey – Total
Udo Käfer – Total
Adriano Martello – Aci
Antonio Pato Eiróes – Hopen
Soom Holten – Ceba
Carlo Pizzini – BP – Chairman
Markus Spiegel – Eurom
Ugo Sannio – Akm
Chris Southwell – Hind
Mike Southren – Eurobitume
Ron Taylor – Permapave
Bill Sweeney – European

Future binder specifications

Eurobitume supports further studies and validation of new test methods in a move towards a limited or stepwise introduction of PRS.

It is considered that there is a need to differentiate between binders used in standard asphalt materials and those used in more intense traffic and special applications such as porous asphalt or EME.

Existing specifications do not adequately describe characteristics of PMBs

Future Binder Specifications

Simple and Complex Binders will have separate specifications

Simple binders (standard pen grades) can be satisfactorily specified by EN 12591

Complex binders are PMBs, hard grades and multigrades (Hard grades could be considered ‘simple’ but as they are used in special applications like EME they require a more precise description of the performance properties.)

A grading system for complex binders needs to be based on a correlation of binder properties and asphalt properties
Future Binder Specifications - Complex Binders

Task Group 1 (TG1) is working on finding a PMB property related to asphalt mechanical resistance and stability (rutting).

Zero Shear Viscosity (ZSV) using DSR

Easier to obtain Low Shear Viscosity (LSV)

SHRP used (DSR) parameter: \(G^*/\sin \delta \) - but poor correlation with field experience

the Multiple Stress Creep Recovery (MSCR) test is under review: measures the non-recoverable creep compliance (\(J_m \))

MSCR test

- load applied for 1 s, recover for 9 s
- further 10 creep/recovery cycles
- repeated for 4 stress levels (30, 100, 300, 1,000 Pa)
- \(J_m \) (non-recoverable creep compliance) is the amount of residual strain left in the specimen after repeated creep and recovery

Dynamic Shear Rheometry

E&E Conference: Durability and Performance: Binders

23 papers
Rheological testing
Rheological characterisation

Ageing of bitumen
Permanent deformation
Fatigue and fracture

All work demonstrated the importance of stringent operating conditions for modified binders before they can be considered suitable for use as DSR binder performance indicators

A key conclusion from the papers dealing with permanent deformation was the successful use of the MSCR and the correlation of \(J_m \) with asphalt deformation for both conventional binders and PMBs

Summary

European has been working on EU Standards since 1995 (not dissimilar to Australia)

Binders are to be categorised according to rheological complexity for specification purposes:

- conventional binders: pen and softening point
- PMBs: sophisticated rheological tests

(Australia has a similar approach - c.f. AS2008 with AGP/T196)

Summary

TG1 “High Temperature Properties” working on a European Standard for MSCR. Final draft in Q2 2013

TG2 “Low Temperature Properties” further validation against road performance for candidate tests Fraass, BBR and Fracture Toughness

TG3 “Binder Ageing and Conditioning” recommends RTFOT for short term ageing and PAV for long term ageing

TG5 “Specification Framework” PRS will be introduced into next version of EN 14023
Summary

Overall a similar approach to Australia
Proposed utilisation of internationally supported test equipment (DSR)
MSCRT proposed for high temperature characterisation
Low temperature characterisation unclear
It is important for Australia to continue to observe
European developments and exchange information and experiences

Thank you for your attention
Merci pour votre attention
Vielen danke fur ihre zeit
Gracias por su atencion
Bedankt voor jullie aandacht
İlginiz için teşekkür ederim